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Abstract 

Ordered binary decision diagrams (OBDDs) are graph-based data structures for repre- 
senting Boolean functions. They have found widespread use in computer-aided design 
and in formal verification of digital circuits. Minimal trellises are graphical representa- 
tions of error-correcting codes that play a prominent role in coding theory. This paper 
establishes a close connection between these two graphical models, as follows. Let C 
be a binary code of length n, and let /c(^i, • • •, xn) be the Boolean function that takes 
the value 0 at X\,...,xn if and only if {x\,..., xn) G C. Given this natural one-to-one 
correspondence between Boolean functions and binary codes, we prove that the minimal 
proper trellis for a code C with minimum distance d > 1 is isomorphic to the single- 
terminal OBDD for its Boolean indicator function /c(#i, ■ • • ,xn). Prior to this result, 
the extensive research during the past decade on binary decision diagrams - in computer 
engineering - and on minimal trellises - in coding theory - has been carried out inde- 
pendently. As outlined in this work, the realization that binary decision diagrams and 
minimal trellises are essentially the same data structure opens up a range of promising 
possibilities for transfer of ideas between these disciplines. 



1.    Introduction 

Algorithms on graphical structures play a central role in both communications and com- 
puter engineering. Most modern communications systems make use of error-correcting 
codes in order to increase reliability and manage resources such as power and spectrum. 
In this context, trellises [75] and related graphs [37, 38] have emerged as a unifying frame- 
work for understanding, manipulating, and decoding error-correcting codes of all types. 
In computer engineering, ordered binary decision diagrams [14, 16] and their variants 
have found widespread use for a range of applications, including circuit checking, logic 
synthesis, and test generation. Binary decision diagrams are at the core of many tools 
for formal verification, and have been a major reason for recent advances in this area. 

In this paper, we show that there is a very close relationship between trellises and binary 
decision diagrams. In particular, we show that if a binary error-correcting code C has 
minimum distance greater than one, then the minimal proper trellis for C is isomorphic 
to the single-terminal ordered binary decision diagram (OBDD) for this code, viewed 
as a Boolean function. Our proof is based on a direct argument using a vertex-merging 
construction of OBDDs due to Bryant [14, 16], along with some basic results on minimal 
trellises. We thus establish a bridge between previously disparate areas of research that 
makes possible coordinated exploration and transfer of ideas between them. One of our 
goals in this paper is to make the two research communities aware of each other. 

Prior to this result, the historical development of ideas surrounding OBDDs and trel- 
lises was independent, yet remarkably parallel. In coding, trellises were introduced by 
Forney [30], and first used to represent and decode block codes by Bahl, Cocke, Jelinek, 
and Raviv [5]. However, the subject remained dormant until the publication of [34, 63] 
in 1988, that ignited a flurry of research during the past decade. To date, the study 
of trellises for block codes encompasses a sizable body of results — a comprehensive 
bibliography, consisting of some 100 references, may be found in the recent survey [75]. 
In a similar fashion, the idea of representing Boolean functions as decision graphs was 
recorded in the early papers of Lee [57] and Akers [2]. However, their widespread use as 
the data structure of choice for symbolic Boolean manipulation started with the work of 
Bryant [14] in 1986, who formulated a set of algorithms for constructing binary decision 
diagrams, and operating upon them. Key to this algorithmic formulation was the require- 
ment that the variables along every path from the root to a leaf occur in a fixed order, 
which is analogous to the well-defined depth property of trellises. During the past decade, 
binary decision diagrams have been a very active research topic in automated logic design 
and verification, and the subject has now accumulated a vast body of literature. 

Not surprisingly, the key results and the central research problems in the two areas share 
much in common. A fundamental theorem in the study of trellises is due to Muder [63], 
who showed that every block code has a minimal proper trellis representation, and any 
two minimal proper trellises for the same code are isomorphic. On the other hand, 
Bryant [14] proved that the OBDD representation of a Boolean function is canonical: for 
a given ordering of variables, two OBDDs for the same function are isomorphic. We now 



realize that these are two instances of the same result, described in different languages. 
A central problem in the study of OBDDs is how to order the variables for a given func- 
tion so that the size of the resulting decision diagram is minimized. A similar problem 
for trellises, known [61, 75] as the art of trellis decoding or the permutation problem, 
asks how the time axis for a given code should be permuted in order to minimize the 
complexity of the resulting trellis. Once again, these are essentially two instances of the 
same problem. In both cases, the research is centered around techniques for combating 
the exponential growth in the size of the graph; but the methods that have been devel- 
oped are complementary. The close relationship between OBDDs and minimal trellises 
that we establish here may therefore lead to useful results for each discipline. 

We point out that the possibility of connection between binary decision diagrams and 
trellises was noted in passing by Horn and Kschischang [43], who wrote that "block- 
code trellises appear to be closely related to graphs called binary decision diagrams that 
are used to represent Boolean functions." However, to the best of our knowledge, this 
connection was never pursued in the literature beyond the single sentence quoted above. 

The rest of this paper is organized as follows. In order to make our results accessible to 
both communities — computer engineering and coding — we start with a brief overview 
of the basic concepts concerning BDDs and trellises in the next two sections. These two 
sections also contain pointers to the literature on their respective subjects. In Section 4, 
we prove our main result: the correspondence between OBDDs and minimal trellises. 
Some directions for transfer of ideas between the two areas are then discussed in Section 5. 

2.    Binary decision diagrams 

Binary decision diagrams are a graph-based data structure for representing Boolean 
functions [14, 16]. They have found widespread use in computer-aided design of digital 
circuits, and form the heart of many tools for formal verification [3, 21, 26]. They are 
also used extensively in logic synthesis [67], and in various aspects* of circuit testing [9]. 

The success of binary decision diagrams has led to research efforts on a number of fronts, 
as surveyed in [18]. First, there have been many improvements to the core technology, 
refining the algorithms and representation techniques for improved performance [12, 40, 
64, 66]. Secondly, a number of extensions to the data structure have been developed, 
leading to a more general class of representations known as decision diagrams. Some 
of these extensions attempt to improve the compactness of representation [7, 28], while 

The importance and potential impact of these methods can be gauged by the highly-publicized Intel 
Pentium floating-point divider bug in 1994, which cost the company an estimated $475 million. It has 
been shown [17] that Intel could have used ordered binary decision diagrams to detect and correct the 
erroneous table entries in the Pentium floating-point divider. 



others extend the class of functions that can be represented [20, 4, 23, 24, 27, 56]. Finally, 
decision diagrams have been applied to a wider range of tasks in [60]. 

In this section, we review the basics of binary decision diagrams, and in particular present 
the canonical algorithm [14, 16] for building the OBDD for a Boolean function. This 
algorithm will be used in Section 4 to construct the minimal trellis for a binary code. 

2.1.    Construction of ordered binary decision diagrams 

A binary decision diagram represents a Boolean function as a rooted, directed acyclic 
graph. The leaves (vertices of degree zero) in this graph are called terminal vertices, or 
simply terminals. The terminals are labeled 0 or 1, corresponding to the possible function 
values. Each nonterminal vertex v is labeled by a function variable var(u) and has two 
outgoing edges, corresponding to the cases where the variable takes on the value 0 or 1 
and directed towards the two children of v, denoted ^o(^) and °->i(u), respectively. For 
any truth assignment to the variables, the function value is determined by tracing a path 
from the root to a terminal vertex, following the appropriate edge from each vertex. 

One example of a binary decision diagram for a Boolean function f(xi,..., xn) is a full 
binary decision tree, which contains 2" terminals and 2n — 1 nonterminals. This is illus- 
trated in Figure la for the function* (x\ + x2) • x3. However, binary decision diagrams 
are usually much more compact. For example, a smaller BDD for the same function is 
illustrated in Figure lb, while Figure lc depicts a BDD for the function x\ + x2 + x$. 

/ 
X3f( X*3        X3}( n*3 s\ /\ /\ /\ 
0     0     0     10     10     1 

a. b. c. 

Figure 1. Examples of binary decision diagrams 

A dashed, respectively solid, line indicates the edge that is followed 
when the decision variable is 0, respectively 1. 

To introduce ordered binary decision diagrams, we impose an arbitrary total order -< on 
the set of variables x\,..., xn. Then the ordered binary decision diagram V for a Boolean 
function f(xi,..., xn) is defined by the following properties: a) every path from the root 

*We use the symbols +, •, ©, and — to denote Boolean OR, AND, EXCLUSIVE-OR, and NOT, respectively. 



to a leaf in V encounters variables in ascending order, and b) it does not contain duplicate 
terminals or nonterminals, or redundant tests (precise definitions of these terms follow 
in the next paragraph). For example, the graphs in Figures lb and lc are OBDDs, if we 
consider the variables to have the ordering x\ -< x2 -< x3. 

Bryant [14] proved that the OBDD representation of a given function is unique — for 
a given ordering, two OBDDs for the same function are isomorphic. He also showed 
that the OBDD for an arbitrary Boolean function f(xi,...,xn) can be constructed by 
applying a set of reduction rules to the full binary decision tree for f(x1,..., xn). First, 
terminals in the decision tree having the same label are merged. This step, known as 
merging duplicate terminals, results in a directed graph with only two terminals, labeled 
0 and 1. A nonterminal v in this graph is said to be a redundant test if t-»o(u) = ^i(w)- 
Redundant tests may be removed, without altering the function being represented, by 
deleting v and redirecting all incoming edges to M-O(-ü). TWO nonterminals u and v are 
said to be duplicate if «^0(v) = M-oW, ^i(v) = ^i(u), and var(w) = var(u). Duplicate 
nonterminals can be merged by deleting one of the two vertices and redirecting all incom- 
ing edges to the other vertex. Again, this does not affect the function being represented. 

The reduction algorithm proceeds by iteratively merging duplicate nonterminals and re- 
moving redundant tests. It terminates when no redundant test or duplicate nonterminals 
remain. This algorithm is summarized below. 

Construction A 

Input: Boolean function f(xu ...,xn) and variable ordering xx -< ■ ■ • -< xn. 
Output: Ordered binary decision diagram for f(xi,..., xn). 

Algorithm: Starting with the full binary decision tree for f(xi,.. .,xn), pro- 
ceed as follows: 

Step 1. Merge duplicate terminals. 
Step 2. Merge all duplicate nonterminals. 
Step 3. Remove all redundant tests. 

Iterate steps 2 and 3 until no duplicate nonterminals or redundant tests remain. 

It is easy to see that Construction A always produces the unique OBDD for f(x1,..., xn). 
To illustrate this construction, consider the Boolean function: 

f(xi,x2,x3,x4,x5)  =  (xi © x2 © xz) + (xi © rr4) + (xx © x2 0 x5) 

Figure 2 shows the OBDD for this function, during the various stages of its construction: 
the top part of the figure depicts the binary decision tree with the terminals merged, the 
center shows the result of merging duplicate nonterminals, and the bottom part shows 
the BDD obtained after removing redundant tests. In this particular example, there are 
no additional duplicate nonterminals generated by step 3, so the algorithm terminates. 



Figure 2. The OBDD for (xx ®x2® x3) + (Xl 0 x4) + (xr ®x2® x5) with 
respect to the ordering xi -< x2 -< x3 -< x4 -< x5 

The OBDD is shown during the various stages of its construction: after step 1 has 
been carried out (top), after duplicate nonterminals have been merged (center), and 
after redundant tests have been removed (bottom). Upon completion of steps 1-3, 
there are no additional duplicate nonterminals, and the algorithm terminates. For 
clarity, a pair of parallel edges between two vertices, is shown as a shaded line. 



2.2.    Operations on ordered binary decision diagrams 

A number of symbolic operations on Boolean functions can be implemented as simple 
graph algorithms applied to their OBDD representations [14, 16]. These algorithms 
typically have complexities that are polynomial in the size of their input. We give just 
one example here. To describe this example, we will need some more notation and insight 
into the structure of ordered binary decision diagrams. 

Given a Boolean function f(xi,..., xn), the function fx which replaces variable x by the 
value 1 is called the positive cofactor of / with respect to x, while the function fx that 
replaces variable x by the value 0 is called the negative cofactor. The Shannon expansion 
(originally recognized by Boole [13]) expresses f(x\,.. .,xn) as follows: 

/ = x-fx + x-fx (1) 

Since at least one of the two terms in the sum above must evaluate to zero, this decom- 
position splits an arbitrary function into two mutually exclusive cases. 

Suppose that a vertex v in an OBDD represents some function /*. If var(v) = x, then 
t-^i(v) represents the function /* and ^>-Q(V) represents the function /|. We postulate 
that the root vertex in the OBDD for a Boolean function /(#i,... ,xn) represents the 
function / itself. Then following a path from the root to a leaf corresponds to taking suc- 
cessive cofactors of f(x\,..., xn) until it reduces to a constant. In other words, OBDDs 
are graphical representations of the Shannon expansion (1) of a Boolean function. 

One use of OBDDs is to test the equivalence of two logic circuits [14, 16]. If the circuits 
are represented as OBDDs corresponding to two functions / and g, then the verification 
is carried out by computing f@g and testing whether the result is the constant function 0. 
This can be done efficiently using the fact that the cofactor operations distribute through 
the Boolean operations; for example (/' ®g)x = fx®gx. Hence, we can compute f ®g as 
x ■ (fx © 9x) + x- (fx © gx)- As a consequence, the verification can be efficiently carried 
out using a recursive graph traversal algorithm. For more details on this and many other 
applications of OBDDs, we refer the reader to the survey by Bryant [16]. 

3.    Minimal trellises for block codes 

Trellises were introduced by Forney [30] in 1967 as a conceptual means to explain the 
inner workings of the Viterbi algorithm [32] for decoding convolutional codes. IBM re- 
searchers Bahl, Cocke, Jelinek, and Raviv [5] were the first to observe that linear block 
codes may be also represented by a trellis, and showed how to construct such a trellis. 
For a detailed survey of the trellis theory of block codes, we refer the reader to Vardy [75]. 

Today, trellises are used extensively in the construction and decoding of error-correcting 
codes, where their applications range from deep-space communications (trellises were 
used to transmit images from Mars in 1977), through high-speed modems, to household 



appliances such as CD players. Furthermore, trellises were also found useful in such ar- 
eas as channel equalization [31], hidden Markov models [29], and speech recognition [6]. 

In this section we present the definition of a trellis, and only briefly touch on some of 
its properties. We also define the minimal proper trellis for a given binary code. This 
notion will be used in the next section to establish the connection with OBDDs. 

Loosely speaking, a trellis T = (V, E, A) is an edge-labeled directed graph with the prop- 
erty that every vertex in T has a well-defined depth. We will regard each labeled, directed 
edge eG£ as an ordered triple (v,v',a), and say that this edge begins at vEV, ends 
at v' G V, and has label a G A With this terminology, we have the following definition. 

Definition 1. A trellis T = (V, E, A) of depth n is an edge-labeled directed graph with 
the following property: the vertex set V can be partitioned as 

v = v0 u vx u • • • u vn 

such that every edge in T that begins at a vertex in Vi ends at a vertex in V+i, and 
every vertex in T lies on at least one path from a vertex in Vo to a vertex in Vn. 

For % = 0,1,..., n, we will refer to Vi as the set of vertices at time i, and call the ordered 
index set X = {0,1,..., n} induced by the partition of the vertex set the time axis for T. 
This temporal terminology is both natural and standard [75] in the study of trellises. 

In most cases of interest, the subsets Vo, 14 C V each consist of a single vertex, called 
the root and the toor, respectively, and this will be assumed in the remainder of this 
paper. A trellis T is said to be proper if the edges beginning at any given vertex of T are 
labeled distinctly. It is said to be co-proper if this condition holds with the direction of 
all edges reversed: namely, if the edges ending at any vertex of T are labeled distinctly. 
A trellis T is said to be biproper if it is both proper and co-proper. 

The set of binary n-tuples is denoted W%. For x, y G F^, the Hamming distance d(x, y) 
is the number of positions where x and y differ. An [n, M, d] binary block code C is 
a subset of F^ of cardinality M, such that min^gc d(x, y) — d. The elements of C are 
called codewords. An (n, k, d) binary linear code is a subspace of F^ of dimension k 
and minimum distance d. An (n, k, d) binary linear code can be specified either as the 
row-space of a k x n binary generator matrix or as the kernel of an (n—k) x n binary 
parity-check matrix. A block code C is said to be rectangular if for all choices of a, b, c, d, 
the fact that (a, c), (a, d), (b, c) G C implies that (b, d) G C, where (•, •) denotes string 
concatenation. It is easy to see that every linear code is rectangular, but not vice versa. 

Definition 2. Let T = (V, E, F2) be a trellis of depth n. Then the sequence of edge la- 
bels along each path from the root to the toor in T defines an ordered binary n-tuple. 
We say that T represents a binary block code C of length n, or simply that T is a trellis 
for C, if the set of all such n-tuples is precisely the set of codewords of C 

The minimal trellis may be defined in a number of different ways which, in most cases, are 
all equivalent to the following definition. We say that a trellis T for a code C of length n 
is minimal if it satisfies the following property: for each % — 0,1,..., n, the number of 



vertices at time i in T is less than or equal to the number of vertices at time i in any other 
trellis for C. Given a code C, it is not at all obvious that there exists a minimal trellis 
for C. Although it is known [51, 75, 76] that such a trellis exists (and is, in fact, unique 
up to graph isomorphism) if the code C is rectangular, there are also examples [52] of 
non-rectangular codes that do not admit a minimal trellis representation. On the other 
hand, this problem does not arise if we restrict our attention to proper trellises. 

Definition3. Let T be a proper trellis for a code C of length n. We say that T is the 
minimal proper trellis for C if it satisßes the following property: for each i = 0,l,...,n, 
the number of vertices at time i in T is less than or equal to the number of vertices at 
time % in any other proper trellis for C. 

One of the fundamental results in trellis theory, due to Muder [63], is that every block 
code, whether it is rectangular or not, has a unique minimal proper trellis. For rectan- 
gular codes (and, hence, also for linear codes), it is known [75] that the minimal proper 
trellis and the minimal trellis coincide. For linear codes, the minimal trellis is sometimes 
called the BCJR trellis, after the authors of [5] who first came up with the construction 
of such a trellis. We elaborate upon the BCJR construction in Section 5. 

Figure 3. Minimal trellis for the code C = {00000,11010,01101,10111} 

There are several natural measures of complexity for a given trellis, including the state 
complexity s = max;log|V;|, the edge complexity \E\, and the Viterbi decoding com- 
plexity Z) = 2|JE7| — |V| -h 1. Recent work has clarified the relationship between these 
parameters, and to a large extent they can be considered as equivalent, at least as the 
block length n gets large. The minimal trellis uniquely minimizes all of these complexity 
measures, given a fixed time axis for the code. The precise statement and proof of this 
and other related facts is the subject of a number of recent papers [33, 62, 73, 76]. 

As a simple example, consider the (5, 2,3) linear code C = {00000,11010,01101,10111}. 
The minimal trellis for this code is shown in Figure 3. The complexity measures for this 
trellis, namely s = 2, \E\ = 16, and D = 19, can be easily found by inspection. 



4.    The main result: OBDDs and minimal trellises 

In this section, we rigorously establish the connection between minimal proper trellises 
and ordered binary decision diagrams. In doing so, we will make frequent use of concepts, 
constructions, and theorems discussed in the foregoing two sections. 

First, we observe that there is a natural one-to-one correspondence between Boolean 
functions of n variables and binary codes of length n. Let C be a such a code, not nec- 
essarily linear or rectangular. We define the Boolean function fc(xi, ■ ■ ■ -,xn) as follows: 

fr(xi X  )    -     1°     ti(xu...,Xn)eC 
11    otherwise 

We call fc(xi,... ,xn) the indicator function of C. To make the terminology concise, we 
will often refer to a binary decision diagram for the indicator function of C simply as 
a BDD for C. Equivalently, given a Boolean function f{x\,..., xn), we define the binary 
block code C/ of length n as the set of all truth assignments to xi,...,xn such that 
f(x\,..., xn) = 0. Thus C/ is just the off-set of /, and / is the indicator function of C/. 

Next, we define the single-terminal OBDD for a Boolean function f(x\,... ,xn) by the 
following procedure, analogous to Construction A. In fact, this procedure is exactly the 
same as Construction A, except for one extra step, as summarized below. 

Construction B 

Input: Boolean function f(xi,..., xn) and variable ordering x\ -< • • • -< xn. 

Output: Single-terminal ordered binary decision diagram for f(xi,... ,xn). 

Algorithm: Starting with the full binary decision tree for f{x\,... ,xn), pro- 
ceed as follows: 

Step 1.   Merge duplicate terminals. 
Step X. Prune away the 1-terminal. 
Step 2.   Merge all duplicate nonterminals. 
Step 3.   Remove all redundant tests. 

Iterate steps 2 and 3 until no duplicate nonterminals or redundant tests remain. 

Recall that after merging the duplicate terminals in step 1, we have a directed graph with 
exactly two terminal vertices, labeled 0 and 1. We then recursively remove all the edges 
and vertices leading only to the terminal labeled 1. This is the step of pruning the one- 
terminal in Construction B. Each nonterminal vertex in the resulting graph has either one 
or two children. If a given vertex v has only one child, we set M-o(v) = 0 or °->i(f) = 0, 
by convention. With this convention, the definitions of redundant tests and duplicate 
nonterminals remain as before, and the algorithm then continues as in Construction A. 



The resulting decision diagram has a single terminal vertex, corresponding to all the 
sequences that evaluate to 0 by f(xi,..., xn), or equivalently all of the codewords of Cf. 
It is important to note that since f(xu ..., xn) is binary, this does not discard any infor- 
mation, and the complete OBDD can be reconstructed from the single-terminal OBDD. 

This observation shows that the single-terminal OBDD can be also obtained in a slightly 
different manner. Namely, the operation of pruning away the 1-terminal (step X) can 
be carried out after the full OBDD for f(xly..., xn) is constructed. We will refer to this 
variation as Construction C. Indeed, it is not difficult to show that the graphs T>B and T>c 

produced by Constructions B and C, respectively, are isomorphic. Each nonterminal 
vertex in these graphs has out-degree one or two. In every instance where the out-degree 
is one, the missing edge must correspond to a sequence that belongs to the on-set of 
f(xi,.. .,xn). Hence, by first appending a terminal labeled 1, and then adding an edge 
from each unary vertex to this 1-terminal, labeling this edge so that the resulting graph 
is proper, we obtain a complete OBDD for f(xu ...,xn) from both T>B and Vc. However, 
two complete OBDDs for the same function are isomorphic, and hence so are T>B and Vc. 

Figure 4. The OBDD and the single-terminal OBDD for the 
function f in (2), or equivalently for the code C defined by (3) 

As a simple example for Construction B (or for Construction C), consider again the 
Boolean function that was used in Section 2 to illustrate Construction A, namely: 

f{xux2,xz,xA,xb)  =  (xi © x2 © x3) + (X! © x4) + (xi 0 x2 © xb) (2) 

Notice that f(x1,x2,x3,x4,x5) is also the indicator function of the (5,2,3) linear code 
C = {00000,11010,01101,10111} used as an example in Section 3. This becomes imme- 
diately clear upon observing that a parity-check matrix for C is given by 

H 
1 1 1 0 0 1 
1 0   0 1 0 
1 1   0 0 1 

(3) 

The OBDD and the single-terminal OBDD for C are shown in Figure 4. Notice that the 
single-terminal OBDD is the same as the minimal proper trellis for C, shown in Figure 3. 
Our main result is the following theorem, proving that this must always be the case. 

10 



Theorem 1. Let C be an arbitrary binary code with minimum distance d > 1. Then 
the single-terminal OBDD for C is the unique minimal proper trellis for C. 

Proof. It is easy to see that the graph resulting after steps 1 and X in Construction B 
is a trellis for C. By the c-»-o(u) = c-^o(u) and Mi(u) = c-h(w) property of duplicate non- 
terminals, the merging procedure in step 2 does not create any new paths that are not 
codewords. Furthermore, by the var(w) = var(w) property, this procedure also preserves 
depth. Hence, the graph resulting after step 2 is still a trellis for C. Now, since d > 1, 
there can be no redundant tests in any trellis for C. Thus step 3 in Construction B is 
vacuous, and the single-terminal OBDD is a trellis for C Furthermore, it is obvious 
that the outgoing edges of every vertex in any binary decision diagram must be labeled 
distinctly. Hence the single-terminal OBDD for C is a proper trellis for C. 

It remains to show that the single-terminal OBDD is the minimal proper trellis for C 
To this end, we need to introduce some more notation and results from trellis theory. 
For i = 1,2,..., n—1, we define the projection of C on the past at time i as follows: 

Vi(C)    =    {(ci,c2,...,c;)  :  (ci,...,Ci,ci+i,...,cn)€C for some cm,...,cnGF2j 

For each c€ Vi(C), we define the future of c as T(c) = {xEF^~J : (c,x) EC}, and say 
that cx, c2 E Vi(C) are future-equivalent if T(ci) = Fipi). It is shown in [63] that a proper 
trellis T = (V, E, F2) for C is minimal if and only if for all i = 1, 2,..., n— 1, the number 
of vertices at time i in T is equal to the number of future-equivalence classes defined by 
this relation. From this, we can derive an alternative necessary and sufficient condition 
for minimality as follows. Given a vertex v G Vi, we define: 

J~T{V)    =    < x E W£~l : x is a sequence of edge labels along a path in T starting at v > 

Then a proper trellis T is minimal if and only if for alH = 1, 2,..., n—1 and for every 
pair of vertices v,v'EVi, we have TT(V) ^ FT(V'). Indeed, this condition implies that 
Ci, C2 G Vi(C) are equivalent if and only if the paths corresponding to c\ and c2 end at the 
same vertex of Vi. Thus \Vi\ must be equal to the number of future-equivalence classes. 

Now consider the single-terminal OBDD for C. We already know that this is a proper 
trellis for C. Call this trellis T = (V,E, F2), and assume to the contrary that there 
exist two distinct vertices v, v' G Vi with ^(w) = TT{V'). By Construction B, at least 
one of {°->o(^), ^o(^')} or {'~^'i{v)-i ^l^')} must be a pair of distinct vertices, otherwise 
v and v' would have been merged as duplicate nonterminals. Notice that we allow for the 
possibility that some of ^->o(v), c->i(u), °^o(^')) ^i(v') may De 0> which means that they 
are not present in the single-terminal OBDD. However, if one of {^->o(v),e-*o(v')} is 0 
then so is the other one, since otherwise TT(V) ^ ^(u'). By a similar argument, either 
^i(v) — ^"h(u') = 0 or both are present in the OBDD. Thus we may assume, w.l.o.g., 
that u = ^->o(^) and u' = °->-o(w') are both present in the single-terminal OBDD, and 
u ^ u'. But then TT{V) = TT{V') implies that TT{U) = ^{u'). Thus, from the existence 
of distinct vertices v,v' EVi with TT{V) = TTW), we have deduced the existence of 
distinct vertices u,u' E V^+i with TT{U) = TT{U'). Iterating this argument, we arrive at 
a contradiction, since Vn consists of a single vertex by construction.  | 
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As an immediate corollary to Theorem 1 and the fact that the minimal proper trellis is 
actually minimal for rectangular codes, we conclude that if C is rectangular and d > 1 
then the single-terminal OBDD for C is isomorphic to the unique minimal trellis for C. 

We point out that an alternative way to view these results comes from considering a bi- 
nary code C or a Boolean function fc as defining a regular set in F2

n. As such, the Myhill- 
Nerode theorem [42] guarantees the uniqueness of the minimal deterministic finite-state 
automaton (DFA) accepting this set. It follows that when the distance of C is larger 
than one, the state diagram of its DFA is the same as the minimal proper trellis, or the 
single-terminal OBDD. This viewpoint is briefly mentioned in the multilingual dictionary 
of coding, systems theory, symbolic dynamics, and automata theory [35]. 

5.    Directions for transfer of ideas 

The connection between binary decision diagrams and trellises established in the previous 
section makes it possible to translate knowledge accumulated in one discipline into the 
language of the other. We will give just a few examples of this in what follows. In light 
of the extensive work that has been done in each of these areas, many other possibilities 
for transfer of results and ideas between the two disciplines surely exist. 

5.1.    From trellises to binary decision diagrams 

We use results from trellis theory to analyze a certain structural property of binary 
decision diagrams, provide lower bounds on the size of OBDDs, and derive a new type 
of decision diagrams that are often more compact than OBDDs. We also comment on 
the complexity of the variable ordering problem, and on alternative graphical models for 
Boolean functions that may follow from the recent research in coding theory. 

Biproper binary decision diagrams. Let V be an ordered binary decision diagram 
for a Boolean function f(xi,...,xn). It is obvious that the outgoing edges of every 
nonterminal vertex in V must be labeled distinctly. When is it that the incoming edges 
of every nonterminal vertex in V are also labeled distinctly? The following proposition, 
which follows directly from Theorem 1, provides an answer to this question. 

Proposition 2. Let f (xi,..., xn) be a Boolean function, and letxx-< <xn be an order- 
ing of its variables. If the corresponding binary code Cf is rectangular then the incoming 
edges of every nonterminal vertex in the OBDD for f(xu ..., xn) are labeled distinctly. 

Proof. It is known [69, 51, 75, 76] that the minimal proper trellis for a rectangular 
code is biproper. Thus if C/ is a rectangular code with minimum distance d(Cf) > 1, 
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then the single-terminal OBDD for f(x\,... ,xn) is isomorphic to the minimal biproper 
trellis for C/, and hence all the incoming edges in the single-terminal OBDD are labeled 
distinctly. Since every nonterminal vertex in the complete OBDD for f(x\,... ,xn) is 
also a vertex in the single-terminal OBDD, the proposition follows. 

Now assume that C/ is rectangular and d(C/) = 1. Then the graph resulting after step 2 
of Construction B is still a biproper trellis for C/. It remains to observe that removing 
redundant tests in a biproper trellis does not create duplicate nonterminals, and that 
the resulting graph remains biproper.  | 

Borrowing the terminology of trellis theory, we will say that a binary decision diagram in 
which the incoming edges of every nonterminal vertex are labeled distinctly is biproper. 
A biproper single-terminal OBDD has the curious property that it can be used to evaluate 
the function in two different ways: either traversing from top to bottom — as is the 
standard practice — or traversing from bottom to top. In other words, the root and 
the single-terminal are interchangeable in a biproper single-terminal OBDD. This, in 
particular, implies that the variable orderings X\ -< • • • -< xn and xn -<•••-< X\ produce 
isomorphic decision diagrams in this case. 

Figure 5. A biproper OBDD for xxx% + xi(x2x3 + x2x3) 

Notice that whether the OBDD for f(x\,... ,xn) is biproper depends not only on the 
function f{x\,..., xn) itself, but also on the ordering of its variables. Indeed, there exist 
codes [69] that are rectangular for some orderings of the time axis and non-rectangular 
for other orderings. Finally, we observe that the sufficient condition for biproperness 
given in Proposition 2 is "almost" necessary as well. It is known [51] that a code is 
rectangular if and only if it admits a biproper trellis representation. Thus a Boolean 
function f(x\,... ,xn) whose off-set C/ has distance d(Cf) > 1 can be represented by 
a biproper OBDD if and only if C/ is rectangular. However, if d(Cf) = 1, this is no 
longer true in general. As an example, consider the Boolean function: 

f{xi,x2,x3)  = x{xz + x1(x2x3+x2x3) 

whose off-set is given by C/ = {001,010,101, 111}. This function has a biproper OBDD, 
shown in Figure 5, even though C/ is not rectangular under any ordering. 
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Lower bounds on the size of binary decision diagrams. Much work in coding 
theory [33, 47, 53, 54, 63, 65] has been devoted to lower bounds on the size of the 
minimal trellis for a given code, under all possible permutations of the time axis. Here, 
we translate some of these bounds into the language of binary decision diagrams. 

To this end, we first need to introduce the appropriate notation. Given a Boolean func- 
tion f(xi,.. .,xn), we let 6o(/) and Gi(/) denote the cardinalities of the off-set and the 
on-set of /, respectively. Thus 0O(/) is just the number of codewords in Cf. Next, we 
elaborate the notation for cofactors of f(xu ...,xn) that was introduced in Section 2.2. 
Given a fixed string (ai,..., am) e {0, l}m and a subset {iu i2,..., im} C {1,2,..., n}, 
we let /U,.1,...,aBiT>i=ai,...j0m denote the function obtained from f(xu...,xn) by replacing 
the variable xh by the value ax, the variable xi2 by the value a2, and so forth. 

For each subset J = {iu i2,..., im} C {1,2,..., n}, we can now define a discrete random 
variable Xj as follows: Xj takes on values in {0, l}m with probabilities given by: 

T>riX     —  (n n     \\     —f ^ ki>".Stm=ai,"-,Qro ) , .. fx\/Cj - [ai,...,am)i   -          . .  (4) 

Notice that for some values of ax,..., am, the function f\Xil,...,Xim=ai,-,am may be a tau- 
tology, in which case Pr{Xj = (au ..., am)} = 0. Thus the number of different values 
that Xj takes on may be less than 2m. 

We next recall the definition of entropy. If X is a discrete random variable taking M 
values with nonzero probabilities pi,p2,... ,PM, the entropy of X is given by: 

H(X)   =  pi log — + p2 log — + • • • + pM log — 
V\ P2 PM 

In terms of the notation introduced in the foregoing paragraphs, we are finally ready to 
define the entropy profile of a Boolean function. 

Definition 4. Let f(xx, ...,xn)bea Boolean function ofn variables. We define r)i(f) as 
the minimum possible entropy of a set of i function variables, namely: 

Vi(f)   =   min H(Xj) for i = 1,2,... ,n 

where the minimum is taken over all subsets J C {1,2,..., n) with \J\ = i. The sequ- 
ence rii(f), rj2(/),..., rjn(f) will be called the entropy profile of f(xi,..., xn). 

A powerful lower bound on the size of the OBDD for a Boolean function f(xu ...,xn) 
can be derived from its entropy profile, providing d(Cf) > 1. Notably, this bound limits 
the size of the smallest OBDD that can be obtained under all possible orderings of the 
variables xi,...,xn. The bound was proved by Reuven and Be'ery [65] in the context of 
trellises; it constitutes a culmination of a long line of work in trellis theory [63, 33, 54]. 
All we have done here is recast this result in the framework of binary decision diagrams, 
using the correspondence between BDDs and trellises established in Theorem 1. 
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Theorem3. Let f(xl,...,xn) be a Boolean function such that d(Cf) > 1.  Then the 
number of vertices at level i in the OBDD for f{xu ...,xn) is lower bounded by 

2^(/) . 2T>n-iW 

e0(/) 
(5) 

where rj^f), n2(f),..., rjn(f) is the entropy profile off. This holds for alii = 1,2,... ,n 
and for any total order on the support {xi,...,xn}. 

We believe that it should be possible to extend the scope of Theorem 3 to functions 
that do not satisfy the requirement d(Cf) > 1. One such extension is immediate. It is 
obvious, by symmetry, that the same result holds if we look at the on-set of the function 
rather than at the off-set, and replace 0O(-) by 6i(-) in equations (4) and (5). Thus 
to apply Theorem 3, it would suffice to require that either Cf or its complement in F2" 
have minimum distance greater than one. Another possible extension might follow by 
observing that this requirement essentially ensures that no redundant tests are encoun- 
tered in the construction of the OBDD. If C/ is a rectangular code with d(Cf) = 1, then 
removing redundant tests does not create duplicate nonterminals (as noted in the proof 
of Proposition 2). Thus, in most cases, this step will not reduce the size of the graph sig- 
nificantly. Exploring to what extent the removal of redundant tests can reduce the size of 
the OBDD beyond the bound of (5) would be an interesting problem for future research. 

Sectionalized decision diagrams. Variable orderings for binary decision diagrams 
correspond to permutations of the time axis for binary codes. Indeed, the problem of 
finding the best variable ordering for a given function, or equivalently the best permu- 
tation of the time axis for a given code, is key in both areas. In trellis theory, another 
operation on the time axis, called sectionalization, has been found useful in a variety of 
contexts. To the best of our knowledge, the counterpart of this operation for binary 
decision diagrams has not been investigated previously in the BDD literature. 

In trellis theory, a sectionalization corresponds to a choice of the symbol alphabet at each 
time index. For example, a binary code of length 2n may be thought of as a quaternary 
code of length n if pairs of consecutive bits are grouped together. A wide variety of such 
granularity adjustments [36] is possible, and each may substantially affect the number 
of vertices, the number of edges, and the overall structure of the trellis. 

The analogous operation for binary decision diagrams consists of grouping consecutive 
variables together, and taking non-binary decisions at each level, based on the value of 
all the variables that correspond to this level. Let us illustrate this idea by an example. 
Consider the following Boolean function: 

{xl®x2®xz®xi) + (x3®x4®x5®x6) + (x5®x6®x7®x8) + (x2®x3@x6@x7) (6) 

The conventional single-terminal OBDD for this function corresponds to grouping its 
variables into singletons {xi},...,{x8}. This decision diagram is shown in Figure 6a. In- 
stead, suppose that we group the variables into pairs {xu x2}, {x3, x4}, {x5, xe}, {x7, x8} 
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and take four-way decisions at each of the resulting four levels, depending upon whether 
the value of the variables in the corresponding pair is 00, 01, 10, or 11. The resulting 
singe-terminal decision diagram is shown in Figure 6b. It is easy to see that this di- 
agram is substantially more compact than the conventional OBDD, although we have 
not changed the order of the variables (in fact, this order is known [75] to be optimal). 
Also notice that a complete decision diagram for the function f(xi,..., x&) in (6) can be 
recovered from Figure 6b by adding 28 more edges, in such a way that the out degree of 
each nonterminal vertex becomes 4, and directing all these edges to the 1-terminal. 

xlxl 
/ /   1 /     1 

w/ / 
,' 11/ 

/               1 

\     \ 10 
\01 \ 

3   41 

\ n/ 

ftX3X4 ^*4^                       ^ XiXi 

i \io   / i 
00 100 01;     V     ;01 

x5x6i \xs\ 
\A \! 

XSX6^.                        .♦ XSX6 

l\° A 
00 joo oil y^ joi 

X7Xg* 
/ 

oo" 
ll\ 

\                    \ \                 \ \             \ \         \ 
N.   \ 

0 
b. 

; /10    \ I 

/oi X 
/ y io 

■ y 

Figure 6. Two decision diagrams for the Boolean function in (6) 

The edge labels in Figure 6b correspond to the values of the decision 
variables that result in the traversal of the edge. 

In general, there are many different ways to sectionalize a given BDD — that is, to parse 
the variables xi,...,xn into groups: the number of distinct parsings, or sectionalizations, 
of x\,... ,xn is about 2n_1. The sectionalization problem thus consists of finding the op- 
timal parsing among the 2"_1 possibilities. In contrast to the variable ordering problem, 
which is known to be NP-complete for OBDDs, it turns out that the sectionalization 
problem has a polynomial-time solution. Lafourcade and Vardy [55] devised a section- 
alization algorithm, based on a dynamic programming approach, that finds the optimal 
sectionalization of an arbitrary trellis in polynomial time. The algorithm of [55] works 
for both linear and nonlinear codes, and easily accommodates a broad range of optimal- 
ity criteria. With some modifications, this algorithm can be applied to binary decision 
diagrams. If a given single-terminal OBDD represents a function / such that d(Cf) > 1, 
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then the algorithm of [55] works as is. Otherwise, one would need a slightly more com- 
plicated book-keeping mechanism for the composition and amalgamation operations de- 
fined in [55]. We leave the details of this modification for future work. 

For verification purposes, one of the most important properties of OBDDs is that they 
are canonical: two functions f{x\,..., xn) and g(xi,..., xn) are equal if and only if their 
(single-terminal) OBDDs are isomorphic for the same order on x\,...,xn. Thus the 
sectionalization operation would be less useful if it did not preserve canonicity. However, 
the algorithm of Lafourcade and Vardy [55] can be easily refined in such a way that 
canonicity is preserved under sectionalization. If we start with two isomorphic trellises 
and sectionalize them using the algorithm of [55], with respect to the same optimality cri- 
terion, then the resulting decision diagrams will be isomorphic. The converse is also true: 
if two sectionalized decision diagrams are isomorphic, they represent the same function. 

Complexity of the variable ordering problem.  It is known [10, 11, 43, 45, 74] 
that the variable ordering problem for binary decision diagrams and the permutation 
problem for trellises are both computationally hard. However, the known NP-hardness 
results establish the intractability of different aspects of these equivalent problems. 

The primary intractability result in the OBDD literature is due to Bollig and Wege- 
ner [11], who show that the following decision problem is NP-complete. 

Instance: A Boolean function f{x\,..., xn) specified in terms of an ordered bi- 
nary decision diagram, and a positive size bound s. 

Question: Is there an ordering of x\,..., xn such that the corresponding OBDD 
for f(xi,..., xn) has at most s vertices? 

Notice that an implicit assumption in this result is that f(x\,...,xn) can be specified by 
an OBDD whose size is polynomial in n. Indeed, if a function f(xi,... ,xn) is specified 
in terms of an OBDD with N = Q(2") vertices, then the complexity of examining all n\ 
possible orderings of xi,... ,xn is only 0(Nlogl°eN). Furthermore, the reduction used in 
the proof of [11] explicitly constructs an OBDD whose size is polynomial in n. Thus the 
hard instances of the foregoing problem are those functions that have a compact OBDD 
representation. On the other hand, it is known (see [58, 77] and the discussion in the next 
subsection) that the fraction of such functions becomes vanishingly small as n —> oo. 

The hardness results for trellises have a somewhat different flavor. Specifically, Horn and 
Kschischang [43] prove that the following decision problem is NP-complete. 

Instance: A binary linear code C of length n, specified by its parity-check or 
generator matrix, a positive integer i < n, and a positive size bound s. 

Question: Is there a permutation of the time axis, such that the number of ver- 
tices at time i in the corresponding minimal trellis for C is less than s? 

It is furthermore shown in [74] that this problem remains NP-complete if the size bound 
is restricted to s = 2\ When translated into the context of binary decision diagrams, 
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using Theorem 1, this implies the following result. Suppose we are given a positive 
integer i < n and a Boolean function f(xu ...,xn) specified in terms of a data structure, 
other than OBDD, whose size is polynomial in n. Then deciding whether there exists 
an ordering of xi,..., xn such that the corresponding OBDD for f(xu ...,xn) has less 
than T vertices at level i is NP-complete. 

Alternative graphical models for Boolean functions. In recent years, a number of 
new graphical models have emerged in coding theory, and evolved into a far-reaching gen- 
eral framework for representing a code by a graph. In this context, one encounters various 
generalizations of a trellis, such as tail-biting trellises [22] and trellis formations [49, 50], 
as well as Tanner graphs [71] that are in some sense diametrically opposite to trel- 
lises. All these representations are special cases of the general concept of a factor graph. 
We refer the reader to [1, 37, 38, 79] for a detailed treatment of factor graphs and the 
associated iterative manipulation algorithms: the min-sum and the sum-product. 

The success of these graphical models in coding theory and communications has been 
spectacular. For example, tail-biting trellis representations have been found in [22, 48] for 
several well-known codes, whose complexity is the square root of the lowest complexity 
achievable with the conventional minimal trellis. On a grander scale, turbo codes [8] 
represented by a factor graph and decoded with an iterative sum-product algorithm have 
been shown to approach channel capacity with feasible complexity, a goal that eluded 
the research community for almost 50 years. More recently, similar results have been 
established [59, 70] for low-density parity-check codes, represented by a Tanner graph. 

It remains to be seen whether any of the graphical models mentioned in the foregoing 
paragraphs can be used to efficiently represent Boolean functions in the context of logic 
synthesis and verification. As an example, consider the well-known hidden weighted bit 
Boolean function, defined by 

h (xi T \  djLf   J° ifwt(x) = 0 
/hwl 1'--"   n)   ~    \xwt{x)       ifwt(aO>0 

where wt(x) is the number of non-zeros in (x1:x2,..., xn). Bryant [15] proved that any 
OBDD representation of this function requires at least fi(1.14n) vertices, yet there exists 
an alternative implementation of /hw(^i, ■ • •, xn) with area-time complexity of 0(n1+e). 
We point out here that this alternative implementation is essentially a factor-graph 
implementation [49]. We refrain from pursuing this any further in this paper. However, 
we believe that this line of research holds great promise. 

5.2.    From binary decision diagrams to trellises 

Since 1986, when ordered binary decision diagrams were introduced for verification prob- 
lems [14], many refinements and variations of the basic data structures and algorithms 
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have been proposed. Here, we discuss how these and other results pertaining to binary 
decision diagrams may be applied to trellises. 

Almost all codes have exponential trellis complexity. It is known [39, 58, 77] 
that almost all n-variable Boolean functions cannot be represented by an OBDD with 
less than 2n/2n vertices, regardless of the variable ordering. More precisely, Liaw and 
Lin [58] establish* the following result. Let u){n) = 22" be the total number of n-variable 
Boolean functions, or equivalently binary codes of length n, and let 7(72) denote the 
number of n-variable functions whose OBDD, under optimal variable order, has less 
than 2n/2n vertices. It is shown in [58] that 

Um ^ = 0 (7) 
n-»oo CO{n) 

We know from Theorem 1 that the minimal proper trellis for C has at least as many 
vertices as the OBDD for fc. Thus the result of (7) transfers directly to minimal proper 
trellises. This was not previously known in the trellis literature. It is known that all 
asymptotically good codes have exponential trellis complexity [53], and almost all linear 
codes are asymptotically good [72, p.77]. However, it is not difficult to see that almost 
all nonlinear codes are not asymptotically good. 

Liaw and Lin [58] also consider quasi-reduced OBDDs, obtained by applying only the 
merging rule (step 2 in Construction A) and not the redundant-tests deletion rule (step 3 
in Construction A). It is obvious from Theorem 1 that a quasi-reduced OBDD for a func- 
tion / is precisely the minimal proper trellis for C/, whether d(C/) > 1 or d(Cf) = 1. 
Asymptotically as n —> 00, Liaw and Lin [58] observe that for virtually all Boolean func- 
tions, the merging rule contributes a factor of 1/n to the overall reduction in the size of 
the OBDD, whereas the redundant-test deletion rule contributes only a constant factor. 
For fixed n, Liaw and Lin [58] find empirically that the merging rule alone accounts for 
over 99% of the average reduction in the size of the OBDD, whenever n > 15. They thus 
suggest that under certain circumstances, it is more advantageous to use quasi-reduced 
OBDDs (namely, trellises!), since then the level-index field can be eliminated from the 
vertex record, resulting in more significant savings in the overall storage space than those 
obtained by the redundant-tests deletion rule. 

Liaw and Lin [58] also show that for all n-variable Boolean functions, the quasi-reduced 
OBDD has at most (2+e)(2n/n) vertices for all sufficiently large n, regardless of the vari- 
able ordering. Clearly, this bound transfers directly to trellises. An intersting conclusion 
from this result, in conjunction with (7), is that the complexity of the minimal proper 
trellis for almost all binary codes is not sensitive to permutations of the time axis: the 
trellis has at least 2n/2n vertices for the best possible permutation, and at most 4 times 
as many vertices for the worst possible permutation. This insensitivity phenomenon, 
well-known [39, 58, 77] in the OBDD literature, was not previously observed for trellises. 

*A similar result was established by Shannon [68] in the context of two-terminal contact networks. 
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Multi-terminal trellises/syndrome decision diagrams. Multi-terminal binary 
decision diagrams [23] are extensions of BDDs for representing functions / : {0, l}n H-» S, 
where S is any finite set. A multi-terminal BDD differs from a conventional OBDD only 
in that it may have multiple terminals, rather than two terminals labeled 0 and 1. 

The notion of multi-terminal BDDs can be exploited to construct a multi-terminal trellis 
that simultaneously represents a binary linear code C as well as all the cosets of C, in F2

n 

or in a given subspace of F2
n. Multi-terminal trellises were used by Ytrehus [41, 80] to 

represent the parallel branch codes encountered in the decoding of partial unit memory 
convolutional codes. In general, such trellises are useful whenever one needs to decode 
a partition of a given space into cosets of a given code. This task is at the core of the 
coset-decoding technique [25] and is frequently encountered in multilevel coding [34, 44]. 

Another application of multi-terminal trellises is as an attractive alternative to the well- 
known standard array decoding technique, which we now briefly describe. Let C be an 
(n,k,d) binary linear code, and let H = [hu..., hn] be a parity-check matrix for C. 
The standard array for C is the 2n~kx 2k matrix with entries from F2

n, having the cosets 
of C in F2" as its rows. For each coset, we may pre-compute the coset leader v, defined 
as the vector of minimal Hamming weight in the coset. For each x6F2

n, the syndrome 
of x with respect to H is defined as ExK Given the channel output y eF", we first 
compute the syndrome s = Hy\ and then decode ytoc = y-veC, where v is the coset 
leader of the coset consisting of all the vectors whose syndrome with respect to H is s. 
This procedure, known as standard array decoding and illustrated in Figure 7, achieves 
hard-decision maximum-likelihood decoding of C on a binary symmetric channel. 

received 
syndrome s coset 

leader 
table 

closest 
coset              codeword 

vector, v 
 . If,          w Hyt 

leader, v  s- ~\   c=y-v 
address -\ 

i i+ 

Figure 7. Standard array decoding 

With a multi-terminal trellis, we can represent the standard array compactly, avoid the 
brute-force enumeration of cosets, and obtain a linear time procedure for both syndrome 
computation and decoding. The idea is to construct a multi-terminal BDD for the func- 
tion hc(xx, ...,xn) = Hx\ using a procedure analogous to the BCJR construction [5]. 
In addition, we will carry out dynamic programming during the construction to label 
each vertex by the minimum weight path that leads to it. 

The BCJR trellis T = (V, E, F2) for a linear code C of length n is constructed [5] by 
identifying vertices with partial codeword syndromes: 

Vi -   |ciÄi + \-ahi  :   (c!,...,cn)eCfor some ci+1,... ,c„ eF2 } (8) 

with V0 = 0 by convention. There is an edge eeEt from v e VJ-i to u G Vt if and only 
if there exists a codeword (cu c2,..., cn) e C such that cxhx + ■ ■ ■ + c^h^ = v and 
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Figure 8. The syndrome decision diagram for C = {00000,11010,01101,10111} 

The terminal corresponding to j/€F2
n is labeled by the syndrome Hyf, and the 

arrows indicate paths to be taken to obtain a minimum weight error vector. The 
syndrome may be calculated by trickling the received vector down the diagram. 
For example, if the vector y = (10011) is received, the corresponding path from the 
root ends in the terminal labeled Hyf = (100)*. Following the backpointers from 
this terminal, the error vector is determined to be (00100). 

C\hi H 1- Cj_i/ij_i + Cihi = u. The label of this edge is a(e) = Q. The multi-terminal 
trellis V = (V, E\ F2) may be constructed in a manner analogous to (8) by computing 
partial syndromes for all vectors in W^, not just the codewords of C Thus, we define 

V-   =   lxihi-\ VXihi  :  (xi,... ,xn) eF2
n for some xi+x,... ,xn GF2 |      (9) 

with V0 = 0 by convention.  There is an edge e G E[ from v G V^'_1 to uEV- with label 
os(e) = XEW2 if and only if u = v + xhi. It is easy to see that the resulting graph V is 
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,t 

the multi-terminal BDD for the function hc{xx, ...,xn) = HxK Note that the minimal 
trellis for C is contained in V as a proper subgraph. Also notice that by replacing F2

n 

in (9) by an arbitrary subspace S such that C C S C F2
n, we obtain the multi-terminal 

trellis that represents the cosets of C in that subspace. 

By carrying out a simple dynamic programming algorithm on V during its construction, 
maintaining for each vertex the minimum weight path reaching that vertex and a corre- 
sponding pointer back to the previous level, we can determine the minimum weight path 
to every vertex in V, and therefore to every syndrome. The straightforward details are 
omitted. The resulting data structure, which we call the syndrome decision diagram for C, 
is illustrated in Figure 8 for the (5,2,3) linear code C = {00000,11010,01101,10111}. 

Given a syndrome decision diagram V, a maximum-likelihood decoder for C can be 
implemented as follows. First we evaluate the received vector y in X>, thus computing 
the function hc{yi,..., yn) = Hyl which gives the syndrome of y, and then trace back 
from the corresponding terminal to find a coset leader v in the coset of y. 

The standard-array decoding procedure, illustrated in Figure 7, has space complexity 
0(2n~k) and decoding complexity 0(n2), since the computation of the syndrome s = Hy 
is in general quadratic in the block length. Construction of the syndrome decision dia- 
gram requires 0{n2n~k) space and time complexity. However, once the diagram is avail- 
able, both syndrome computation and decoding can be accomplished in linear time. 

In general, as a computational device that computes syndromes in linear time, syndrome 
decision diagrams would be useful in many different contexts in coding theory. 

Reed-Muller expansions and OFDDs. One approach to obtaining more compact 
representations of Boolean functions has been to change the interpretation of the vertices 
within the data structure. As discussed in Section 2, OBDDs represent the Shannon 
expansion (1) of a Boolean function. An alternative expansion of a Boolean function can 
be expressed in terms of the EXCLUSIVE-OR operation: 

/ =  fx®x-fSx  = fx®x-f6x (10) 

where fSx = fx e h is the Boolean difference of / with respect to x. The first equality 
in (10) is known as either the Reed-Muller or the negative Davio expansion, while the 
second equality is referred to as the positive Davio expansion. These decompositions are 
analogous to the Taylor expansion of a differentiable function. 

The Reed-Muller expansion can be used [46] as the basis for graphical representations 
called ordered functional decision diagrams. This representation is analogous to OBDDs, 
except that the outgoing edges from a vertex represent the negative cofactor and Boolean 
difference of the function with respect to the vertex variable. Ordered functional decision 
diagrams (OFDDs) have many properties in common with OBDDs. For example, the 
representation is canonical, and can be constructed using a similar algorithm for merging 
and eliminating vertices, with a different reduction rule for removing redundant tests. 
The OFDD for our example code C = {00000,11010,01101,10111} is shown in Figure 9. 
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Figure 9. The OFDD and the OBDD for C = {00000,11010,01101,10111} 

For some classes of functions, OFDDs are exponentially smaller than the corresponding 
OBDDs, although the reverse can also hold. One interesting direction for future re- 
search would be to explore an application of OFDDs for channel coding, by investigating 
decoding algorithms based on this representation. 

One useful decoding algorithm for trellises is the forward-backward algorithm, also called 
the BCJR algorithm after the authors of [5], who first developed this algorithm in the 
trellis context. The forward-backward algorithm is widely used in practice, for example 
in the decoding of turbo codes [8], to obtain maximum a posteriori likelihood (MAP) 
decoding of each code symbol. The complexity of this algorithm is polynomial in the size 
of the trellis, or equivalently the size of the single-terminal OBDD for the code. However, 
we will now show that it is unlikely that the calculations required in the forward-backward 
algorithm can be carried out efficiently using the OFDD representation. 

The forward-backward algorithm assumes knowledge of the channel transition probabil- 
ity function p(y\x), where x e C is the channel input and y is the vector observed at the 
channel output. For a given binary code C, the algorithm effectively computes 

Mxi)   =    ^2p(y\x)      and      Sifa)   =    ^p{y\x) (11) 
xec 
x;=0 

xec 
x;=l 

for alii = 1,2, ...,n, and decodes the z'-th code bit xt to either 0 or 1, according as 
S0(xi) > Si(xi) or Si(xi) > S0(xi). Although the formulation of the forward-backward 
algorithm in (11) is general, we will restrict our attention to the simplest possible channel 
model: the binary symmetric channel with cross-over probability 0. Thus the channel 
output is binary, and the transition probability function is given by: 

Pe(y\x)  = 6d^y) (1 - 0)»-%**) (12) 

where d{x, y) is the Hamming distance and 0 e [0,1] is a real constant.  The decoding 
algorithm that we seek must work for any 0, thought of as a parameter of the algorithm. 
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Proposition 4. Let C be an arbitrary binary block code, and let T be an OFDD for C. 
Then there is no polynomial-time algorithm in the size of T for computing the expres- 
sions S0(xi) and Si(xi) in (11) for the function pe(y\x) in (12), unless P = NP. 

Proof. The key idea of the proof is to observe that on a binary symmetric channel 
with 9 = 0.5, the forward-backward algorithm simply counts the number of codewords 
that have 0, respectively 1, in the specified position. Indeed, for 9 = 0.5, we have 

SoixJ+S^Xi)  =  Y, (0.5)d(s'w) (0.5)n-d(x'y)  + ^2 (0.5)^ {0.5)n-d^y)  =  A 

Thus, as a special case, such an algorithm could be used to compute the size of the 
code. It is shown in [78], however, that the problem of computing |C/| using the OFDD 
representation of a Boolean function f(xi, ...,xn) is #P-complete.  | 

We conclude that OFDDs are not suitable for the kind of calculations required in the 
forward-backward algorithm, at least for general binary codes. It is still possible that 
OFDDs can be used efficiently in the context of the forward-backward algorithm in the 
special case of linear codes. It is also possible that maximum-likelihood decoding, as op- 
posed to symbol-by-symbol MAP decoding, can be implemented efficiently with OFDDs. 

Binary moment diagrams. There have been several efforts to extend the concept 
of BDDs to represent functions over Boolean variables, but having non-Boolean ranges, 
such as the integers or the real numbers. 

-i 

h3 

o 

Figure 10. Tie BMD for a linear code with parity-check matrix H = [hi,h2,...,hn] 

One approach to representing numeric functions, especially those encountered in arith- 
metic circuit verification, involves changing the function decomposition with respect to 
its variables, in a manner analogous to the use of Reed-Muller expansions for FDDs. 
The moment decomposition of a function is obtained as 

/ =  fw + x-(fx~ fa)  = fx + x • fdx 

where fdx = fx - fx is called the linear moment of / with respect to x. The resulting 
representation is known [20] as the binary moment diagram or BMD. 
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Our conclusion with regard to binary moment diagrams is, again, negative. As pointed 
out to us by Randy Bryant [19], this representation turns out not to be useful for codes. 
Indeed, let C be an (n, k, d) linear code with parity-check matrix H = [hi, h2,.. ■, hn]. 
Then the binary moment diagram of the F^~fe-valued function hc(xi,..., xn) = Hxf is 
the tree shown in Figure 10. Using the fact that the BMD representation is canonical [20], 
this statement follows by a simple induction on the block length of the code. 

6.    Conclusions and discussion 

We have established a correspondence between ordered binary decision diagrams and 
minimal trellises, proving that the single-terminal OBDD for a binary code C, viewed as 
a Boolean function, is isomorphic to the minimal proper trellis for C, provided d(C) > 1. 

Although we have emphasized the similarities between the two data structures through- 
out this paper, one should also be aware of the differences between them. It appears 
that the major distinction between trellises and OBDDs results from the elimination of 
redundant tests, which does not preserve the depth structure of a trellis. This distinc- 
tion becomes vacuous if d(C) > 1. The restriction d(C) > 1 does not have much of an 
impact in coding theory: any useful code will have minimum distance greater than 1. 
However, there is no reason why the off-set of a useful Boolean function should satisfy 
this requirement. Thus every reasonable trellis is an OBDD, but not vice versa. 

Another significant distinction between the theory of binary decision diagrams and trellis 
theory stems from a difference in emphasis. While most of the research in channel coding 
is focused on linear codes, the corresponding class of Boolean functions has not received 
much attention in logic synthesis and formal verification. 

Despite the dissimilarities discussed above, we have demonstrated that the connection 
between trellises and OBDDs opens up many possibilities for leveraging the extensive 
work that has been carried out independently in two previously unconnected disciplines. 
We hope that this paper will stimulate further research in this direction. 
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